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Abstract
Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field
of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several
measures (e.g., area-under-the-curve, F1-measure, average precision, etc.) have been used to evaluate the similarity between a
foreground map and a ground-truth map. The existing measures are based on pixel-wise errors and often ignore the structural
similarities. Behavioral vision studies, however, have shown that the human visual system is highly sensitive to structures in
scenes. Here, we propose a novel, efficient (0.005s per image), and easy to calculate measure known as S-measure (structural
measure) to evaluate foreground maps. Our new measure simultaneously evaluates region-aware and object-aware structural
similarity between a foreground map and a ground-truth map. We demonstrate superiority of our measure over existing ones
using 4 meta-measures on 5 widely-used benchmark datasets. Furthermore, we conduct a behavioral judgment study over a
new database. Data from 45 subjects shows that on average they preferred the saliency maps chosen by our measure over
the saliency maps chosen by the state-of-the-art measures. Our experimental results offer new insights into foreground map
evaluation where current measures fail to truly examine the strengths and weaknesses of models. Code: https://github.com/
DengPingFan/S-measure.
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1 Introduction

The evaluation of a predicted foregroundmap (FM) against a
ground-truth (GT) annotationmap is crucial in evaluating and
comparing various computer vision algorithm for applica-
tions such asARCOPY&PASTE (Qin et al., 2021), object
detection and recognition (Borji et al., 2013a, 2015;Kanan&
Cottrell, 2010; Rutishauser et al., 2004; Islam et al., 2018),
video summarization (Ghosh et al., 2012), video compres-
sion (Guo & Zhang, 2010; Itti, 2004), image segmentation
(Yu et al., 2018), content-based image retrieval (Li et al.,
2013a; Liu & Fan, 2013; Liu et al., 2015), visual track-
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ing, photo synthesis (Chen et al., 2009), image-text matching
(Zhuge et al., 2021b), image collection browsing (Chen et al.,
2009), etc. As a specific example, here we focus on salient
object detection (Borji et al., 2015; Borji & Itti, 2013; Borji,
2015;Bylinskii et al., 2015;Zhanget al., 2017, 2018a, 2018b,
2018c; Wang et al., 2018; Chen & Li, 2018; Gorji & Clark,
2018; Li et al., 2018; Zeng et al., 2018; Liu et al., 2018;
Tiantian et al., 2018), although the proposed measure is gen-
eral and can be used for other purposes. It is worth noting
that the salient object does not necessarily need to be the
foreground object (Feng et al., 2016; Borji et al., 2013b).1

The GT map is often the average of several manual anno-
tations. Thus, it can be binary or non-binary. Similarly, the
predicted foreground maps are either binary or non-binary.
As a result, evaluation measures can be classified into two
types:

1. Binarymap evaluation: Commonmeasures here include
Fβ -measure (Arbelaez et al., 2011; Cheng et al., 2015; Liu
et al., 2011) and PASCAL’s VOC segmentation measure
(Everingham et al., 2010).

1 https://clipdrop.co/.
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2. Non-binary map evaluation: Three traditional and pop-
ular measures here include area under the curve (AUC),
precision-recall (PR) curve, and average precision (AP)
(Everingham et al., 2010). A newly released measure
known as weighted Fβ -measure (Fbw) (Margolin et al.,
2014) has been proposed to remedy flaws of AUC, PR
and AP.

It is often desired to have the foreground map contain
the entire structure of an object. Thus, evaluation measures
are expected to tell which model generates a more complete
object. For example, in Fig. 1 (first row) the blue-border map
better captures the dog than the red-border map. In the lat-
ter case, shape of the the dog is drastically degraded to a
degree that it is difficult to guess the object category from
its segmentation map. Surprisingly, all of the current evalu-
ation measures fail to correctly rank these maps (in terms of
preserving the structure).

We employed 10 state-of-the-art (SOTA) saliency detec-
tion algorithms to obtain 10 saliency maps (Fig. 2; 1st row)
and then fed these maps to the SalCut2 (Cheng et al., 2015)
algorithm to generate corresponding binary maps (2nd row).
Finally, we used the proposed S-measure to rank thesemaps.
A lower score for our measure corresponds to more destruc-
tion in the global structure of the man (columns e to j). This
experiment clearly shows that our new measure emphasizes
the entire structure of the object. In these ten binary maps
(2nd row), there are six maps with score below 0.95, i.e. with
percentage 60%. Using the same threshold (0.95), we found
that the proportions of destroyed images in four popular
saliency datasets [i.e., ECSSD (Xie et al., 2013), HKU-IS (Li
& Yu, 2015), PASCAL-S (Li et al., 2014), and SOD (Mar-
tin et al., 2001)] are 66.80%, 67.30%, 81.82% and 83.03%,
respectively. Using the Fβ -measure to evaluate the binary
maps, these proportions are 63.76%, 65.43%, 78.32% and
82.67%, respectively. This means that our measure is more
stringent than the Fβ -measure on object structure.

To remedy the problem of existing measures (i.e., low
sensitivity to entire object structure), we present a structure-
sensitive similarity measure based on two observations:

1. Region perspectives: Although it is difficult to describe
the structure of a foregroundmap,we notice that the entire
structure of an object can be well illustrated by combining
structures of constituent object parts (regions).

2. Object perspectives: In high-quality foreground maps,
the foreground regions contrast sharply with the back-
ground regions. These regions usually have approxi-
mately uniform contrast distributions.

2 https://github.com/MCG-NKU/SalBenchmark/blob/master/Code/
CmLib/Saliency/CmSalCut.cpp.
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Fig. 1 Inaccuracy of existing evaluation measures. We compare the
ranking of saliency maps generated by three state-of-the-art (SOTA)
salient object detection algorithms: DISC (Chen et al., 2016), MDF (Li
&Yu, 2015), andMC (Zhao et al., 2015). According to the segmentation
application’s ranking (last row; see details in Apps-Sec. 5), the blue-
border map ranks first, followed by the yellow- and red-border maps.
The blue-border map captures the dog’s structure most accurately, with
respect to the GT. The yellow-border map looks fuzzy although the
overall outline of the dog is still present. The red-border map almost
completely destroyed the structure of the dog. Surprisingly, all of the
measures based on pixel-wise errors (first three rows) fail to rank the
maps correctly. Our new measure (4th row) ranks the three maps in the
right order (Color figure online)

Consequently, the proposed structure measure consists
of two parts, including a region-aware structural similarity
measure and an object-aware structural similarity measure.
The region-aware measure tries to capture the global object
structure by combining the structural information of all the
object parts. The structural similarity of regions has been
well explored in the image quality assessment (IQA) commu-
nity (Wang et al., 2004). The object-aware similaritymeasure
tries to compare global distributions of foreground and back-
ground regions in the foreground map and the GT map.

Our measure is compared against various existing mea-
sures including AP, AUC, PASCAL, Fbw, Fβ -measure on
several widely-used salient object detection benchmarks
including ASD (Achanta et al., 2009), SOD (Martin et al.,
2001), ECSSD (Xie et al., 2013), PASCAL-S (Li et al., 2014),
and HKU-IS (Li & Yu, 2015). Extensive empirical inves-
tigations show that Structure-measure not only provides a
reliable evaluation but also achieves significantly improved
performance than current measures.

This work is an extension of our previous ICCV2017 ver-
sion (Fan et al., 2017). The major differences between these
two versions include: (1) We extend the preliminary version
to binary foreground map evaluation and provide a unified
evaluation applicable to both binary and non-binary fore-
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Fig. 2 S-measure score (λ = 0.5, K = 4) for the outputs of SalCut (Cheng et al., 2015) algorithm (2nd row) when fed with inputs of 10 saliency
maps (1st row). The ranking results clearly indicate that our measure is good at capturing object structures and can provide a reliable ranking

ground maps. Our work offers new insights into foreground
maps evaluation where current measures fail to examine the
strengths and weaknesses of models fully. (2) We provide a
set of new experiment to validate the efficiency, robustness,
and extensibility of our proposed measure. These extension
focus on non-binary maps’ evaluation. Besides, we also give
more details about our application-ranking framework in
Appendices. (3) We build the several representative online
Benchmark and model zoo of saliency detection, which
integrates various publicly available saliency datasets with
uniform input/output formats (i.e., JPEG for image; PNG
for GT). (4) We also provide Python3 and Matlab4 version
code for existing benchmarking work which benefits many
related tasks and our computer vision community. (5) We
have made a lot of efforts to improve the presentations and
organizations of our paper. First, several new figures are
added or re-produced to better illustrate the meta-measure
and key results of this work. Second, we have added sev-
eral new sections to describe more details about the flaws of
current measures, provide more theoretical details about our
S-measure, andmore theoretical details include region-aware
(Sect. 4.1) and object-aware (Sect. 4.2) structure similar-
ity evaluation. The new content will allow readers to better
understand our approach.

2 Current EvaluationMeasures

Foreground maps can be generated by various algorithms
(e.g., for saliency detection or object segmentation). Saliency
detection algorithmsoftengenerate non-binarymaps,whereas
object segmentation algorithms usually generate binary
maps. As a result, the foreground maps can be divided as

3 https://github.com/DengPingFan/eval-co-sod.
4 https://dpfan.net/One-KeyEvaluation/.

non-binary maps with values in the range [0, 1] or binary
maps with values either 0 or 1. Each map value denotes the
probability of a specific pixel belonging to the foreground
(Peng et al., 2014; Margolin et al., 2014).

2.1 Evaluation of Binary Maps

To evaluate a binary map, four values are computed from
the prediction confusion matrix: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives
(FN).These values are thenused to compute three ratios: True
Positive Rate (TPR) or Recall, False Positive Rate (FPR), and
Precision:

Recall = T PR = T P

T P + FN
(1)

FPR = FP

T N + FP
(2)

Precision = T P

T P + FP
(3)

The Precision and Recall are combined to compute the
traditional Fβ -measure.

Fβ = (1 + β2)Precision × Recall

β2 × Precision + Recall

= (1 + β2)T P

(1 + β2)T P + β2FN + FP

(4)

where β is a parameter to balance the accuracy and the recall
(typically β = 1 leading to harmonic mean). Another com-
monly used binary map evaluation metric is the PASCAL
measure:

PASCAL = T P

T P + FN + FP
(5)
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2.2 Evaluation of Non-binary Maps

AUC and AP are two universally-agreed evaluation mea-
sures. Algorithms that produce non-binary maps apply three
steps to evaluate the agreement between model predictions
(non-binary maps) and human annotations (GT). First, mul-
tiple thresholds are applied to the non-binary map to get
multiple binary maps. Second, these binary maps are com-
pared to the GT to get a set of TPR [see Eq. (1)] & FPR [see
Eq. (2)] values. These values are plotted in a 2D plot (a.k.a
ROC curve), from which the AUC distills the area under the
curve.

The AP measure is computed in a similar way. One can
get a Precision [see Eq. (3)] & Recall [see Eq. (1)] curve by
plotting Precision p(r) as a function of Recall r . APmeasure
(Everingham et al., 2010) is the average value of p(r) over
the evenly spaced x axis points from r = 0 to r = 1.

Recently, a measure called Fbw (Margolin et al., 2014)
has offered an intuitive generalization of the Fβ measure. The
authors of Fbw identified three causes of inaccurate evalua-
tion of AP and AUC measures. To alleviate these flaws, they
(1) extended the four basic quantities TP, TN, FP, and FN to
non-binary values and, (2) assigned different weights (w) to
different errors according to different location and neighbor-
hood information.

Fω
β = (1 + β2)Precisionω × Recallω

β2 · Precisionω + Recallω
(6)

While this measure improves upon other measures, some-
times it fails to correctly rank the foreground maps (see the
3rd row of the Fig. 1). In the next section, we will analyze
why the current measures fail to rank these maps correctly.

3 Current Measures are Pixel-Wise Based

Traditional measures (AP, AUC, PASCAL, Fβ and Fbw) rely
on two types of basic errors: FN, FP. Since these basic errors
are calculated in a pixel-wise manner (see the Fig. 3), they
cannot fully capture the structural information of foreground
maps. However, foreground maps with fine structural details
are often desired in several applications (e.g., image retrieval,
object detection and segmentation). Therefore, evaluation
measures sensitive to foreground structures are favored.
Unfortunately, the aforementioned measures fail to meet this
expectation.

A contrived example is shown in Fig. 4which contains two
different types of foreground maps. In FM1, a black square
falls inside the digit while in the FM2 it touches the boundary.
In our opinion, FM1 is less favored than FM2 since it destroys
the foreground map more drastically. However, the current
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Fig. 3 The current evaluation measures’ framework. The AP, AUC and
Fbw evaluation measures are computed in a similar way. They are all
calculated in a pixel-wise manner and ignore the structural similarities

Fig. 4 A pixel-wise based evaluation example. In FM1, a black square
falls inside the digit while in the FM2 it touches the boundary (1st row).
They are two binary maps (2nd row) with the same TP, TN, FP and
FN values. Visually, FM2 is favored over FM1 since FM1 destroys the
foreground map’s structure more drastically such that the the digit is
hard to recognize. Current evaluation mean absolute error (MAE) mea-
sure is calculated in a pixel-wise manner and treat pixels independently.
Hence, it ignores the structure of the foregroundmaps, thus it favor FM1
over FM2

pixel-level MAE (mean absolute error) measure favors FM1
over FM2. This seems to contradict our common sense.

A more realistic example is shown in Fig. 5. The blue-
border map here better captures the pyramid than the
red-border map, because the latter offers a fuzzy detection
map that mostly highlights the top part of the pyramid while
ignoring the rest. From an application standpoint (3rd row,
the output of the SalCut algorithm fed with saliency maps;
ranked by our measure, i.e., the 2nd row), the blue-border
map offers a complete shape of the pyramid. In practice, this
situation is very common. Thus, if the evaluation measure
cannot capture the structural object information, it will not
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Fig. 5 A pixel-wise based evaluation example. Two foreground maps
are generated by two saliency detection algorithms DSR (Li et al.,
2013b), and ST (Liu et al., 2014). According to the application’s ranking
and our user-study (Apps-Sec. 5; last row), the blue-border map does
the best, followed by the red-border map. Since Fbw measure does not
account for the structural similarity, it results in the complete reverse
ranking. Our measure (2nd row) correctly ranks the blue-border map as
higher (Color figure online)

be able provide reliable information for model selection in
applications.

4 ProposedMeasure

In this section, we introduce our new measure to evaluate
foreground maps. In the image quality assessment (IQA)
field, a measure known as structural similarity measure
(ssim) (Wang et al., 2004) has beenwidely used to capture the
structural similarity of the original image and a test image.

Let x = {xi , i = 1, 2, . . . , N } and y = {yi , i =
1, 2, . . . , N } be the FM and GT pixel values, respectively.
The x̄ , ȳ, σx , σy are the mean and standard deviations of x
and y, respectively. σxy is the covariance between the two.
The ssim is formulated as the product of three comparison
terms including luminance, contrast, and structure:

ssim = 2x̄ ȳ + C1

(x̄)2 + (ȳ)2 + C1
· 2σxσy + C2

σ 2
x + σ 2

y + C2
· σxy + C3

σxσy + C3

(7)

where the constants C1,C2, and C3 are set to very small
values to avoid instability when denominator (e.g., x̄2 + ȳ2)
is very close to zero in each component.

In Eq. (7), the first two terms denote the luminance com-
parison and contrast comparison, respectively. The closer the
two (i.e., x̄ and ȳ, or σx and σy), the closer the compari-
son (i.e., luminance or contrast) to 1. The structures of the
objects in an image are independent of the luminance that is
affected by illumination and the reflectance. So the design
of a structure comparison formula should be independent of

luminance and contrast. ssim (Wang et al., 2004) associates
two unit vectors (x− x̄)/σx and (y− ȳ)/σy with the structure
of the two images. Since the correlation between these two
vectors is equivalent to the correlation coefficient between x
and y, the formula of structure comparison is denoted by the
third term in Eq. (7).

To build salient object detection or object segmenta-
tion algorithms, researchers are often more concerned about
the foreground object structures. Thus, our proposed struc-
ture measure combines both region-aware and object-aware
structural similarities. The region-aware structural similar-
ity performs similar to Wang et al. (2004), which aims to
capture “object-part” structure information without any spe-
cial concern regarding how complete is the foreground. The
object-aware structural similarity, on the the other hand,
is designed to mainly capture the structure information of
“object-holistic” which focus on the complete object.

4.1 Region-Aware Structural Similarity Measure

Here we explain how to measure region-aware similarity.
The region-aware similarity is designed to assess the object-
part structure similarity in FM against the GT map. We first
divide each of the FM and GT maps into four blocks using a
horizontal and a vertical cut-off lines that intersect at the cen-
troid of the GT foreground. Then, the subimages are divided
recursively as in Lazebnik et al. (2006). The total number of
blocks is denoted as K . An example is shown in Fig. 6. The
region-aware similarity ssim(k) of each block is computed
independently using Eq. (7). We assign a different weight
(wk) to each block proportional to the GT foreground region
that this block covers. Thus, the region-aware structural sim-
ilarity measure can be formulated as:

Sr =
K∑

k=1

wk × ssim(k). (8)

Our investigation shows that the proposed Sr can well
describe the object-part similarity between a FM and a GT
map.We also tried to directly use ssim to assess the similarity
between FM and GT at the image level or in the sliding

GT

 FM

FG BG

SoSr

Fig. 6 The framework of our S-measure
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window fashion as mentioned in Wang et al. (2004). These
approaches fail to capture region structure similarities.

4.2 Object-Aware Structural Similarity Measure

Dividing the foreground map into blocks helps evaluate the
object-part structural similarity. However, the region-aware
measure (Sr ) can not well account for the object similarity
in a holistic way. For high-level vision tasks such as salient
object detection, the evaluation of the object-level similarity
is crucial. To achieve this goal, we propose a novel method
to assess the foreground and background separately. Since,
the GT maps usually have important characteristics includ-
ing sharp foreground–background contrast and uniform
distribution, the predicted FM is expected to possess these
properties. This helps easily distinguish foreground from the
background.Wedesign our object-aware structural similarity
measure with respect to these characteristics.

4.2.1 Sharp Foreground–Background Contrast

Our first observation is that the foreground region of the GT
map usually contrasts sharply with the background region.
We employ a formulation that is similar with the lumi-
nance component of ssim, to measure how close the mean
probability is between the foreground region of FM and
the foreground region of GT. Let xFG and yFG represent
the probability values of foreground region of FM and GT,
respectively. x̄FG and ȳFG denote themeans of xFG and yFG ,
respectively. The foreground comparison can be represented
as:

OFG = 2x̄FG ȳFG
(x̄FG)2 + (ȳFG)2

. (9)

Equation (9) has several appealing properties:

– Swapping the value of x̄FG and ȳFG , OFG will not
change the result,

– The range of OFG is [0, 1],
– If and only if x̄FG = ȳFG , then OFG = 1, and
– The closer the two maps, the closer the OFG to 1 (the
most important property).

These properties make Eq. (9) suitable for our purpose.

4.2.2 Uniform Distribution

Our second observation is that the foreground and back-
ground regions of the GT maps usually have uniform
distributions. So, it is important to assign a higher score to a
FMwith the object being uniformly highlighted (i.e., similar

values across the entire object; see the Fig. 5). If the vari-
ability of the foreground values in the FM is high, then the
distribution will not be uniform.

In probability theory and statistics, the coefficient of vari-
ation defined as the ratio of the standard deviation to themean
(σx/x̄) is a standard measure of dispersion of a probability
distribution. Here, we use it to represent the dispersion of
the FM. In other words, the coefficient of variation is used to
compute the dissimilarity between FM and GT distributions.
According to Eq. (9), the total dissimilarity between FM and
GT at object-level can be written as:

DFG = (x̄FG)2 + (ȳFG)2

2x̄FG ȳFG
+ λ × σxFG

x̄FG
, (10)

where λ is a constant to balance the two terms. Then, the sim-
ilarity between FM and GT at object level can be formulated
as:

S′
FG = 1

DFG

= 2x̄FG ȳFG
(x̄FG)2 + (ȳFG)2 + 2λ × ȳFG × σxFG

.

(11)

Since in practice the mean probability of the GT fore-
ground is exactly 1 (ȳFG = 1), the similarity between FM
and GT in object level can be rewritten as:

SFG = 2x̄FG
(x̄FG)2 + 1 + 2λ × σxFG

. (12)

To compute background comparison SBG , we regard the
background as the complementary component of foreground
by subtracting the FM and GT maps from 1 (change 1 to the
maximum value of GT when GT is a non-binary map) as
shown in Fig. 6. Then, SBG can be similarly defined as:

SBG = 2x̄BG
(x̄BG)2 + 1 + 2λ × σxBG

. (13)

Let μ be the ratio of the foreground area in GT to the
image area (width × height). The final object-aware struc-
tural similarity measure can then be written as:

So = μ × SFG + (1 − μ) × SBG . (14)

4.3 Structure Measure

Having region-aware and object-aware structural similarity
evaluation definitions, we can formulate the final measure as,

S = α × So + (1 − α) × Sr , (15)
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where α ∈ [0, 1]. We set α = 0.5 in our implementation
to assign equal contribution to both region similarity and
object similarity. Using this measure to evaluate the three
foreground maps in Fig. 1, we can correctly rank the maps
consistent with the application rank and human rank.

5 Experiments

In order to assess the quality of our new measure, we uti-
lized 4 meta-measures proposed by Margolin et al. (2014)
and 1 meta-measure (human judgments) proposed by us.
These meta-measures are used to assess the quality of eval-
uation measures (Pont-Tuset & Marques, 2013). To conduct
fair comparisons, the 4 meta-measures are computed on the
ASD (a.k.a ASD1000) dataset (Achanta et al., 2009). The
non-binary foreground maps (5000 maps in total) were gen-
erated using five saliency detection algorithms including CA
(Goferman et al., 2012), CB (Jiang et al., 2011), RC (Cheng
et al., 2015), PCA (Margolin et al., 2013), and SVO (Chang
et al., 2011) [binarymaps are achieved by feeding non-binary
maps to the SalCut (Cheng et al., 2015)].

Setting and Runtime We assign λ = 0.5 and K = 4 in all
experiments as Fan et al. (2017). We also test our measure
on the ASD1000 dataset using a single CPU machine. The
average run time for a single image is 0.0053 s.

5.1 Meta-Measure 1: Application Ranking

The first meta-measure examines the ranking correlation of
the evaluation measure to that of an application that uses
foreground maps (Margolin et al., 2014). We assume that
the GT map is the optimal input for the application (the top
path in Fig. 7). Then, given a foreground map, we compare
the application’s output (the bottom path in Fig. 7) to that of
the GT output. The closer the saliency map is to the GT, the
closer its application output should be to the GT output. We
compare the ranking result by each binary and non-binary
evaluation measure: AP, AUC, Fbw, PASCAL, Fβ and ours,
to the ranking result by the application.

The work in Margolin et al. (2014) has examined three
applications: object detection, segmentation and image
retrieval.Here,we use the SalCut (Cheng et al., 2015)method
(for non-binary) and image retrieval (for binary) application
(see “Appendix Sect. 7”) to compute this meta-measure.5

We utilize the 1-Spearman’s ρ measure (Best & Roberts,
1975) to evaluate the ranking accuracy of the measures,
where a lower values indicates better ranking consistency.

5 We follow the same experimental settings with Fbw (Margolin et al.,
2014) for a fair comparison. Note that Fbw only provides the retrieval
application, we can not achieve the other two application details.

Fig. 7 Meta-measure 1: application ranking. To rank foreground maps
according to an application,we compare the output obtainedwhen using
the GT, to the output when using the FM. The more similar a FM is to
the GT map, the closer its application’s output should be to the GT
output
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Fig. 8 Meta-measure 1—results The ranking correlation of an eval-
uation measure to that given by the SalCut segmentation (Non-binary
evaluation) and image retrieval (Binary evaluation) application.Weused
1-spearman’s rho as the results presentation. The lower the score, the
better an evaluation measure is in term of predicting the preference of
the application. Our measure achieves a better performance over other
evaluation measure

The score of 0 indicates that the evaluation measure ranked
the saliency maps identically to that of the application. The
score of 2 indicates that the evaluation measure ranked the
foreground maps in a complete reverse order. Comparison
between different measures (AP, AUC, Fbw, Ours) is shown
in Fig. 8a, which indicates that our structure measure pro-
duces the best ranking consistency among other alternative
methods. According to the example shown in Fig. 1, all of
the current non-binary measures fail to rank the foreground
maps correctly. Our measure correctly ranks these maps. In
the case of binary maps, S-measure also offers a 5.35%,
3.74%, 2.19%, improvement over the PASCAL, Fβ , and Fbw
measure, which score 0.897, 0.882, and 0.868, respectively,
compared to 0.849 by our measure.
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5.2 Meta-Measure 2: SOTAVersus Generic

Our second meta-measure is that a measure should prefer the
output achieved by a SOTA algorithm over generic baseline
maps (e.g., centered Gaussian map, see Fig. 9d) that discard
the image content. A good evaluation measure should rank
the SM generated by a SOTA model higher than a generic
map.

We count the number of times a genericmap scored higher
than the mean score generated by the five SOTAmodels [CA
(Goferman et al., 2012), CB (Jiang et al., 2011), RC (Cheng
et al., 2015), PCA (Margolin et al., 2013), SVO (Chang et al.,
2011)]. The mean score provides an indication of model
robustness. Results are shown in Fig. 10. The lower the value
here, the better the measure is. Over 1000 images, our mea-
sure has only 11 errors (i.e., genericwinning over the s.t.a) for
non-binary maps.Meanwhile, the AP andAUCmeasures are
very poor and make significantly more mistakes. Our mea-
sure also offers a large improvement over the PASCAL, Fβ ,
and Fbw.

Fig. 9 Meta-measure 2: state-of-the-art versus generic. Given the input
image a and the corresponding GT in b, an evaluation measure should
give the FM generated by the SOTA method (c) a higher score than
the generic map (d) that does not consider the content of the image.
Unfortunately, all of the current evaluation measures give the map in
d a higher score than c. Only our measure correctly ranks the SOTA
result higher
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Fig. 10 Meta-Measure 2—results. The percentage of times that an
evaluation measure ranked a generic map (non-binary circle or binary
centered gaussian map) higher than the FM generated by the SOTA
model. The lower the score, the better the evaluation measure is. Our
measure achieves the best performance

5.3 Meta-Measure 3: Ground-Truth Switch

The third meta-measure specifies that a good SM should not
obtain a higher score when switching to a wrong GT map. In
Margolin et al. (2014), a SM is considered as “good” when it
scores at least 0.5 out of 1 (when compared to the original GT
map). Using this threshold (0.5), top 41.8% of the total 5000
mapswere deemed as “good” ones. For a fair comparison, we
followMargolin et al. to select the samepercentage of “good”
maps. For each of the 1000 images, 100 randomGT switches
were tested. We then counted the percentage of times that a
measure increased a saliency map’s score when an incorrect
GT map was used (see Fig. 11).

The Fig. 12 shows the results. The lower the score, the
higher capability to match to the correct GT. Our measure
performs the best about 10 times better compared to the sec-
ond best measure. This is due to the fact that our measure
captures the object structural similarity between a FM and a
GTmap. Ourmeasure will assign a lower value to the “good”
FMwhen using a random selected GT since the object struc-
ture has changed in the random GT.

Fig. 11 Meta-measure 3: ground-truth switch. The score of a FM gen-
erated from a should decrease when using a wrong Switched GT as the
reference. However, both AUC and AP gave the map in b a higher score
when using d instead of c as the reference GT map. Using our mea-
sure, the score of b appropriately decreased when switching to random
ground-truth (d)
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Fig. 12 Meta-measure 3—results. The percentage of times (tested on
1000 ASD dataset) that an evaluation measure assigned a higher score
when using an incorrect GT map. The lower the score, the better the
measure is. Our measure achieves significant improvement over other
measures in both non-binary and binary maps
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5.4 Meta-Measure 4: Annotation Errors

The fourth meta-measure specifies that an evaluation mea-
sure should not be sensitive to slight errors/inaccuracies in
the manual annotation of the GT boundaries. To perform this
meta-measure, wemake a slightlymodifiedGTmap by using
morphological operations. An example is shown in Fig. 13.
While the two ground truth maps in (b) & (c) are slightly dif-
ferent, a goodmeasure should not switch the ranking between
the two foreground maps (d) & (e), when using (b) or (c) as
the reference.

We use the 1-Spearman’s ρ measure to examine the
ranking correlation before and after annotation errors were
introduced. The lower the score, the more robust an evalua-
tion measure is to annotation errors (Margolin et al., 2014).
Results are shown in Fig. 14. Our measure outperforms both
the AP and the AUC but is not the best. Inspecting this rea-
son, we realized that it is not always the case that the lower
the score, the better an evaluation measure is. It is that some-
times “slight” inaccurate manual annotations can change the
structure of the GT map, which in turn can change the rank.

We examined the effect of the structure change more
carefully. Major structural changes often correspond to con-
tinuous large regions in the difference map between ground
truth and its morphologically changed version. We used the
sum of corroded version of the difference map as a measure
of major structure change and to sort all the ground truth
images.

Among top 10% least changed images, our measure and
Fbw have the same MM4 scores (both of them are 0). When
the topology of ground truth map does not change, our mea-
sure and Fbw preserve the original ranking. This can be seen

Fig. 13 Meta-measure 4: annotation errors. An evaluation measure
should not be sensitive to slight changes in the manual annotation of
the GT boundaries. While GT (b) & GT’ (c) are almost identical, some
measures switched the ranking order of the two foreground maps (e,
f), depending on the different (d) GT used. Our measure consistently
ranked e higher than f. Best viewed in color (Color figure online)
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Fig. 14 Meta-measure 4—results. The ranking correlation of an evalu-
ation measure under small manual annotation inaccuracies. We use the
1-Spearman’s Rho measure to present the results. The lower the score,
the better
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Fig. 15 Structural unchanged case. Both of ours and the Fbw mea-
sure are not sensitive to inaccuracies (structural unchanged) in manual
annotations of the GT boundaries

in the example in Fig. 15. While ground truth maps (GT and
Morphologic GT) differ slightly, both Fbw and our measure
preserve the ranking order of the two saliency maps, depend-
ing on the used ground truth map.

For top 10% most changed images, we asked 3 users to
judge whether the ground truth images have major structure
changes. 95 out of 100 ground truth images were considered
to have major structure changes (e.g., small bar, thins legs,
slender foot and minute lines in each group; see Fig. 16), for
which we believe that keeping the same ranks is not good.
Figure 17 is a typical example. When we use the GT map as
the reference, Fbw and our measure rank the two maps prop-
erly. However, when usingMorphologic GT as the reference,
ranking results are different. Clearly, the blue-border SM is
visually and structurallymore similar to theMorphologic GT
map than the red-border SM. A good measure should rank
the blue-border SM higher than red-border SM. So the rank-
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Fig. 16 Structural changed examples. The first row shoes the GTmaps.
The second row shows morphologically changed versions. We observe
significant structural changes
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O
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Fig. 17 Structural changed case. The ranking of an evaluation measure
should be sensitive to the structural changes. Surprisingly, the current
best measure (Fbw) does not account for structural changes. Using our
measure, we rank the maps correctly. Best viewed on screen

ing of these two maps should be changed. While the Fbw
measure fails to meet this end, our measure gives the correct
order.

Above-mentioned analysis suggests that thismeta-measure
is not very reliable. Therefore, we do not include it in our
comparison.

5.5 Further Comparison

The results in Figs. 8, 10, and 12 show that our measure
achieves the best performance using 3 meta-measures over
the ASD1000 dataset. However, a good evaluation measure
should performwell over almost all datasets. To demonstrate
the robustness of our measure, we further use 10 SOTA algo-
rithms for salient object detection to perform experiments on
another 4 widely-used benchmark datasets.

ForegroundMaps Collection We used 10 SOTA algorithms
including 3 traditional models [i.e., ST (Liu et al., 2014),

DRFI (Jiang et al., 2013), and DSR (Li et al., 2013b)] and
7 deep learning based models [DCL (Li & Yu, 2016), rfcn
(Wang et al., 2016), MC (Zhao et al., 2015), MDF (Li & Yu,
2015),DISC (Chen et al., 2016),DHS (Liu&Han, 2016), and
ELD (Lee et al., 2016)] to generate the binary and non-binary
foreground maps. Binary maps are obtained by thresholding
the non-binary maps using image dependent adaptive thresh-
olding method in Achanta et al. (2009).

Benchmark Datasets The 4 widely-used datasets include
PASCAL-S (Li et al., 2014), ECSSD (Xie et al., 2013),
HKU-IS (Li & Yu, 2015), and SOD (Martin et al., 2001).
PASCAL-S contains 850 challenging images, which have
multiple objects in high background clutter. ECSSD con-
tains 1000 semantically meaningful but structurally complex
images. HKU-IS is another large dataset that contains 4445
large scale images. Most of the images in this dataset contain
more than one salient object with low contrast. Finally, we
also evaluate our measure over the SOD dataset, which is
a subset of the BSDS dataset. It contains a relatively small
number of images (300), but with multiple complex objects.

Results Non-binary and binary maps’ quantitative compar-
ison results are shown in Table 1. Our measure performs the
best according to the first meta-measure for both binary and
non-binary maps evaluation. This indicates that our measure
is more useful for applications than other measures.

For the evaluation results (binary and non-binary) in
MM2, our measure performs better than the existing four
measures (AP, AUC, F, PASCAL) with a large margin. The
results on two easier datasets (ECSSD and HKU-IS) show
that our measure and Fbw perform on par for both binary and
non-binary maps.

According to meta-measure 3, our measure reduces the
non-binary error rate by 67.62%, 44.05%, 17.81%, 69.23%
on PASCAL, ECSSD, SOD and HKU-IS, respectively com-
pared to the second ranked measure. For binary maps, our
measure also reduces the error rate by 62.86%, 52.38%,
10.96%, 61.54% on PASCAL, ECSSD, SOD and HKU-IS,
respectively compared to the second ranked measure. This
indicates that our measure has higher capacity to capture the
structural similarity between FM and GT maps.

Overall, our measure wins in the majority of cases indi-
cating that it is more robust than other measures.

5.6 Meta-Measure 5: Human Judgments

Here,we propose a newmeta-measure to evaluate foreground
evaluation measures. This meta-measure specifies that the
map ranking according to an evaluation measure should
highly agree with the human ranking. It is argued that “a
human being is the best judge to evaluate the output of any
segmentation algorithm” (Pal & Pal, 1993). However, sub-
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jective evaluation over all images of a dataset is impractical
due to time and monetary costs. To the best of our knowl-
edge, there is no such visual similarity evaluation database
available in the object segmentation domain that meets these
requirements. Here, we focus on the non-binary maps to col-
lect such a database.

Stimuli The source foreground maps are sampled from
three large scale datasets: PASCAL-S, ECSSD, and HKU-
IS. As mentioned above, we use 10 SOTA saliency models
to generate the maps for each dataset. Therefore, we have 10
foreground maps for each image. We use Fbw and our mea-
sure to evaluate the 10 maps and then pick the first ranked
map according to each measure. If the two measures choose
the samemap, their rank distance is 0. If one measure ranks a
map first, but the other ranks the same map in the n-th place,
then their rank distance is |n − 1|. Figures 18, 19 and 20a,
b, c show the histogram of rank distances between the two
measures. The blue-box is the number of images for each
rank distance. Some maps with rank distance greater than 0
are chosen as candidates for our user study.

User Study We randomly selected 100 pairs of maps from
the three datasets. The top panel in Fig. 21b shows one exam-

ple trial with the best map according to our measure on the
left, and the best map according to the Fbw on the far right.
The user is asked to choose the map she thinks resembles the
most with the GT map. In this example, these two maps are
obviously different making the user decide easily. In another
example (bottom panel in Fig. 21b), the two maps are too
similar making it difficult for the used to choose the one
closet to the GT. Therefore, we avoid showing such cases
to the subjects. Finally, we are left with a stimulus set of
size 50 pairs. We developed a mobile phone app (see Fig.
21a) to conduct the user study. We collected data from 45
viewers who were naive to the purpose of the experiment.
Viewers had normal or corrected vision. (age distribution is
19–29 years old; eduction from undergraduate to Ph.D; from
10 different majors such as history, medicine and finance; 25
males and 20 females).

Results Results (Fbw vs. our measure) are shown in Fig. 22.
The percentage of trials (averaged over subjects) in which a
viewer preferred the map chosen by our measure is 63.69%.
We used the same procedure to conduct two additional user
studies (AP vs. our measure, AUC vs. our measure). The
results are 72.11% and 73.56%, respectively. This indicates
that our measure correlates better with human judgments.
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Fig. 21 Our user study platform
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Fig. 22 Results of our user study (Fbw & S-measure). The x axis is
the viewer id. The y axis shows the percentage of the trials in which a
viewer preferred the map chosen by our measure

5.7 Saliency Model Comparison

Establishing that our S-measure offers a better way to evalu-
ate foreground maps, here we compare 10 SOTA models on
4 datasets (PASCAL-S, ECSSD, HKU-IS, and SOD). Fig-
ure 23 shows the rank of the 10 models. According to our
measure, top three models in order are dhsnet, DCL, and
rfcn. Moreover, we also establish many representative online
benchmarks (1. http://dpfan.net/socbenchmark; 2. http://

DSR ST DRFI mc MDF DISC ELD rfcn DCL dhsnet
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Fig. 23 Ranking of 10 saliency models using our new measure. The
y axis shows the average score on each dataset [PASCAL-S (Li et al.,
2014), ECSSD(Xie et al., 2013),HKU-IS (Li&Yu, 2015), SOD(Martin
et al., 2001)]

dpfan.net/d3netbenchmark; 3. http://dpfan.net/cosod3k/; 4.
http://dpfan.net/camouflage/) to compared our S-measure
with other measures.

6 Ablation Study

To investigate the contribution of each part in our S-
measure, we further conduct the ablation study on a new
human ranking dataset (Fan et al., 2021b). The FMDatabase6

consists of 185 color images and 555 ranked maps. Sim-
ilar to meta-measure1, we also utilize the 1-Spearma’s ρ

metric to evaluate the ranking performance of the mea-
sures.

As shown in Table 2, we observe that our S-measure
outperforms other settings (i.e., object-aware, region-aware)
on FMDatabase. It clearly shows that only region-level
or object-level structural similarity cannot provide stable
evaluation performance. Since the object-aware structure
similarity mainly focusing on assessing the property of sharp
foreground–background contrast. It more like a global eval-
uation. On the other hand, the region-aware links to the
local evaluation which based on window-level statistics.

6 http://dpfan.net/e-measure/.
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Table 2 Ablation studies of human ranking (Using FMDatabase-
IJCAI’18) in terms of 1-Spearman’s measure

Settings 1-Spearman’s measure

Object-aware 0.195

Region-aware 0.142

S-measure (Ours) 0.140

Fbw (Margolin et al., 2014) 0.149

ssim (Wang et al., 2004) 0.223

The best (the lower the better) score is highlighted in bold

Compared with existing two classical metrics (i.e., Fbw
and SSIM), we also found that our metric achieve the best
results.

7 Discussion and Conclusion

In this paper, we analyzed the current saliency evalua-
tion measures based on pixel-wise errors and showed that
they ignore the structural similarities. We then presented
a new structural similarity measure known as S-measure
which simultaneously evaluates region-aware and object-
aware structural similarities between a saliency map and
a ground-truth map. Our measure is based on two impor-
tant characteristics: (1) sharp foreground–background con-
trast, and (2) uniform saliency distribution. Further, the
proposed measure is efficient and easy to calculate. Exper-
imental results on 5 datasets demonstrate that our mea-
sure performs better than the current measures including
AP, AUC, and Fbw. Finally, we conducted a behavioral
judgment study over a database of 100 saliency maps
and 50 ground-truth maps. Data from 45 subjects shows
that on average they preferred the saliency maps chosen
by our measure over the saliency maps chosen by the
Fwb.

All metrics are double-edged swords. Generally, it’s hard
to argue which measure is the best one. These measures
are deeply coupled to the actual applications, e.g., some
applications may favor the correctness of important regions
while some may prefer the continuity in local structures. We
observe a few failure cases where a prediction map without
(or less) object structure will achieve a higher S-measure

Fig. 24 Failure case. With the given image (a) and its corresponding
GT in (b), our S-measure ranked (d) generic higher than c rfcn due to
these prediction map without obvious structure

score. For example, as shown in Fig. 24, the proposed
S-measure does not work well in this situation in which
the object of the GT (b) without a clear structure. Con-
sequently, to evaluate the foreground maps, we need to
assess whether it performs well on multi metrics at the same
time.

In summary, our measure offers new insights into fore-
ground map evaluation where current measures fail to
examine the strengths and weaknesses of models fully. For
now, we have found that the saliency [e.g., RGB SOD
(Zhuge et al., 2021a; Zhang et al., 2020a; Chen et al.,
2020; Zhao et al., 2019), RGB-D SOD (Zhang et al., 2021;
Zhao et al., 2020; Fan et al., 2021d; Fu et al., 2021;
Zhou et al., 2021), RGB-T SOD (Zhang et al., 2019b),
light field SOD (Zhang et al., 2019a; Piao et al., 2020;
Jiang et al., 2020), VSOD (Ji et al., 2021), 360 SOD, SID
(Li et al., 2017), Saliency Ranking (Amirul Islam et al.,
2018), Co-SOD (Fan et al., 2021c, e; Zhang et al., 2020b),
and HR SOD (Zeng et al., 2019)] community has begun
to widely adopt this measure even in the camouflaged
object detection (Fan et al., 2021a; Zhai et al., 2021; Mei
et al., 2021) and medical image segmentation (Fan et al.,
2020).
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Appendix

Image Retrieval Application We use the publicly avail-
able content based image retrieval system LIRE (Lew et al.,
2000) as our application. Firstly, we generate a combined
image as Fig. 25a–d. For each combined GT image (e.g.,
GT1, . . . ,GTn ; n denotes the total number of images), we
use LIRE to extract the CEDD feature and then search a list
of 100 most similar images GTlst−i = {G1−i , . . . ,G100−i }.
LIRE also assigns the 100 images with score (GTscore−i =
{Gs1−i , . . . ,Gs100−i }) which indicates the similarity value.
Accordingly, for each FMcomb image we can obtain the 100
most similarity images FMlst−i and corresponding score
sets FMscore−i . Finally, let Qi = {GTlst−i ∩ FMlst−i }. We
search FMk which equals to Gi in the FMlst−i . If FMk

exists, we record the index k and the corresponding score
Fsk−i . The similarity Si of each FM assigned by LIRE is:

Si =
{
Fsk−i + 1

k + ‖Qi‖
100 , Gi ∈ Qi

‖Qi‖
100 , otherwise

(16)
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Fig. 25 Integration of the image with its foreground map. a, c Are the images (Imgs) with its GT and FM. b, d Are the combined images
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